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BA!IC CONCEPTS OF RADAR POLARIMETRY1
AND ITS APPLICATIONS TO

TARGET DISCRIMINATION, CLASSIFICATION, IMAGING AND IDENTIFICATION

Wolfgang-Martin Boerrner
* Electromagnetic Imaging Division, Communications Laboratory

College of Engineering, The University of illinois at Chicago
P.O. Box 43148, 851 S. Morgan St.,, 11417SEO, Chicagg, IL. 60680

ABSTMRCT

In meticulous detail, a succinct summary of b~asic electromagnetic wave
polarization deiscriptors, of the various scatterer polarization transformation
matrces, and its Invariants of the associated optimal matrix polarizatlkons,
ane of' the scatterer descriptive operators In Introduced, It Is then show~n
holmw thf. five (5) Ir-dependent matrix parametr~r for the relat~iv% phase mora-static
~.iattcring matrix. cescrlbing an~ Isolated, ;et relilonally dls'ributud, t.arget
In a revciprocal prdIpagt,.tion medium can be/#rer~overed from (1) amplituda-only,
01i) minxed ainpiltu(ce pium~ partial phase., (il1) c;omplete t-wc-ate,ý a3;Pplltude-I
phetse roIeasure~menti", Ba,,ic prope'rti-es of the radiar target catri:g matrix for~
illnear' (H, V) and r'1rcular (R, L) polarrizva.tion basis are desccrbe~d in terms o"'.
cttimetrical 1argetdie,-tures as functions of the specular polr-. 5.urface coordin~ate
parameters, Vnown ill gausslao principal, main and related cuivature functlor),.
Based upon this suci:inct background Introduction on radar polarimetry, the
concepts-are applie.d mainly fur thie zoherent case to variou~j classes of 7rncreas-
Ing order of sophistication, as defined In detail In the 1147KODUCTIONi, 4o the
problem of radar target handling~ for the non-ccaperative, ilimited-dat'A case.l.

KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination. claissification,
T~TaWng, optimal polarization nulls, polarization transformation matrix,
Mueller matrix, ra~dar scattering matrix, polarization fork.

PREAMBLE: In the pursuit of this research on radar target rracognttionfhandling
;OTM-hn. r-to-nm wavelength region we are dealing with wide interdisciplinary
research areas for which not all studies carrie~d out In thea past. are available
In the open li.terature. In seeking for a unified approach of treating this
complex problem, It can happen that one may overlook some, important base studies;
and, therefore, the paper presented here is i revised, highly' updated version
of earlier similar papers. Specifically, we owe our apologits to Dr. Glendon
McCormick, Mr. Archibald Hrnndry and Mr. t,averne E. Allen, Flectromagnetics Div-
ision, NRC, Ottawa, Canada, for not hav~ng paid due attention to their outstanding
contributions to pollarimetric radar me*1.eorology. The maj1or relevant contributionej
of their research are now lncluded ir this paper,

1. INTRODUCTION

The inte~raction of ele(trowdignetic. waves withtj ' geometrically bounded,
mat~erial body may best be descr ibed as a

"Poaiain-e~l!v Scatterer Feature Spatial al,id Temporal
ResIonance Phenor~enori.",

This research was supr.arted tinder I4AV-AIR Systems Command Contract
No. :NOOO]9-80-.C-O620V,.



particularly when the spatial and temporal periods become of the order of a target
characteristic features and motional dimensions. Specifically, for the limited
data, non-cooperativ4% target case, there exists an hierarchy in complexity, amount,
quality and accuracy of radar data requixed to obtain an "immediate (instantaneous)
decision operator" in tactical (seeker) radar for the distinct radar problems of:

Target versus clutter discrimination: Various methods
may be applicable, yet we found that in a hostile clutter
and/or chaff environment such as (i) the marine boundary
layer, (ii) the atmospheric ground-based battle-field scene,
or (iii) for low-flying tactical aircraft involved in support
of ground/s.ers-based battle actv ons, we must incorporate
complete CW polarimetric targ.at/cl.utte" scattering matrix in-
formation. Specifically, we reqire co utilize the dynamic
polarimotri,: fork properties. Whereas, for distributed
cluttr.r/chaff, the vector .scatterirnZ centers are distributed
more, denselyf aind separated b'y a svall fraction of a wavelength,
.esulting ii' a more sta'Jle ,aotior, of t',,e associated co-polarization
Siulls (pron.i of rolar'.zat.ion fork) on tio% Poincare sphere;
those of isolace,ý'I% lger, more complex (man-.nade) objects
are s•eparated by distarc,4s beiing comparable to the wavelength
and larger, -resulting iut a rapid circular path loci motion
on th' polarizarton spherr. Therefore, the highly varied
behavior of thi dynam'1c polarization fork motions of
"target (rapJ.A) versui clutter/chaff (slow) on the polari-
zation sphe',"e will provide an indispensible target versus
clutter/cOaff discrimination operator as was demonstrated
without further doubt. by Poelman (1977 to 1982). We noteij that w;e also will need to reassess the merit factor definitions
of optimal targf.t signal versus clutter-plus-noise separation
which 3eed to 'oe based on Huynen's N-target theories
(Htuynen, 197,Q) ar.d Poelman's (1981) maximumi entropy approach
irr extractirg tne most useful stochastic: merit factor
parametric diarrams based on Kennaugh's optimal target
polarizati.on ',,ull theory.

Target -versvs-target i-nd clutter-versus-clutter classification:
Because -- 67Th• act ';hat the i'dctor scattering centers of larger,
more coorplex isolr.•t(d targe'c!, are separated by longer electric
lenithf• resultirg -in a rapied circular path motion of the

pelariz0tion for'A, in gereral,, over the entire Poincare sphere
in ca'sr, of "lnr-symnetrizal'" reciprocal targets, we find that

S'a mon chromat' ^c CW, lim-Ited ý.spect, complete polarimetric approach
for the bakccatter (monustatic) radar case will not suffice;
an6, in aý•i,:tion, we 7quvire polarimetric target downrange silhouette
*rrsolutiort. Although the mean optimal polarization null locations
,nd their spread car, Ue obtained for clutter and/or chaff rather
accuratý/ly if the p,.,larimetric clutter matrix information is

. recovrwred within rime frames lying below the clutter vector

scattering center re!,huffLing time ; improved clutter classifi-

mLI
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,cation (surface versus inhomogeneous volumetric underburden scatter
can only result from broadband complete polarimetric clutter
information (Fung and Eom, 1982; Morgan and Weisbrod, 1982;
McCormick and Hendry, 1982; Boerner and Huynen, 1982).
We re-emphasize that, given complete bToadband polarimetric

scatter matrix information, target classi'lication for the
non-cooperative target versus target, target versus clutter,
and clutter versus clutter case is guaranteed (Root, 1980,' Banks, 1981).

Target imaging in inhomogeneaus media and/o!r clutter environments:
In case the target does not possess rotational syrnetry but
"is of general "not-symmetrical" reciprocal shape, in addition
to complete polarimetric downrange linear chirp maps along the

A rotational axis of invariance, we will iequire such data over a
wide cone of the unit sphere of directions in dependence of

'! data completeness, quality, etc. or, additional "equivalent a
priori" target shape information. In case the target is embedded
in weekly diffracting cluttor, the G.O. superlimited parallelbeam
methods of projection tomography do not suffice; then we must,
at least, incorporate back-propagation tomographic methods based
on the Born/Rytov approximation to apply, which represent
a dramatic improvement'dver Radon's single ray (straight or
bent) projection reconstruction theory. Furthermore, as we
are strictly dealing with an ele'ctromagnetic vector inverse
problem, the scalar back-propagation tomographic method must
be extended to vector back-diffraction tomography for the
general case of a target embedded in the type of clutter
described above. For the application of general vector back-
diffraction tomography to target imaging in dense depolarizing
clutter, we also must develop direct scattering theories in-
corpora~ting a polari-metric vector radiation transfer approach
utilizing a Stokes' vector formulation which implicitly must
also contain multi-scatter phase information.

Target identification: Complete single target identification
in shape and material decomposition will strictly require
solutions to all of the above three (3) tasks, plus incorpor-
ation of ccomplete doppler and scatterometric information within

the various windows of the m-to-sub-mm wavelength region.
Therefore, we need to develop complete rolarimetric broadband

(discrete linear chirp) doppler radar systcms within the
various windows of the 1-400 GHze.m. spectral region so that
optimal target information can be extracted from electro-
magnetic wave/target interaction which is a "polarization-
sensitive target feature spatial and temporal resonance
p-enomenon", i.e., amplitude, phase polarization, frequency,
doppler inform, ation, all are equivalently and equally important
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Criteria for the Assessment of Available Complete Polarimetric
Measurement Methods:

The main obstacle towards realizing incorpoiation of complete
polarimetric radar target theory into target versus clutter"
discrimination, target versus target classification, target in
clutter imaging, single target identification unti. recently
was the underdeveloped state of broadband pilAarimetric antenna
theory and design. It was not possible to revover for the
general not-symmetrical reciprocal target case (which must be
the basic requirement here), i.e., both amplitude and relative
polarization phase of the scattering matrix elements at time
frames below the vector scattering center reshuffling time of
clutter/chaff. Until very recently, complete eliipsometric
amplitude-only measurement principles had to be used which
require nine (9) rather time-consuming independent amplitude-
only measurements for a selected set of linear, circular and
elliptical base polarizations. For the complete symmetric
(H, V, aligned) target case, Copeland (1960) and Huynen (1960)
independently developed polarization rotation-sweep techniques,
which were shown to be sufficient to recover the optimal
polarization nulls of aligned, symmetric targets only on the

,polarization sphere from co-polarized amplitude-only measure-
ments. In a next step, a method of recovering the co/cross-
polarization phase OAB or OBA for SAA/SAB or SBB/SBA
measurements was developed using fast magnetic waveguide
switches and/or pin-diode switches, This method, when re-designed
for the circular left/right polarization base vector pair
"does provide a two-step complete measurement approach, as e.g.,
was developed by McCormick/Allan/Hendry (1977-1982) for polari-
metric radar meteorology, for which target reciprucity must
apply as well as complete target symmetry with respect to the
linear H, V polarization basis which certainly is a rather
unrealistic assumption for the case of tactical target detection
in meteorological clutter. More recently with the advanced
pin-diode switching technology, it is now possible to recover
complete polarimetric scattering matrix information for the
general "not-symmetrical" reciprocal target case within the
time frames which lie below the reshuffling time of vector
clutter scattering centers, i.e., we are now witnessing the
realistic phase of incorporating complete radar polarimetric
concepts into the general radar target description problem.

In the following sections, a survey of the important concepts of radar polari-
metry is presented and relevant examples are provided.

I:
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2. POLARIZATION DESCRIPTORS

In tilis brief survey of optimal polarization descriptors, we will
schematically introduce basic definitions (Table 1), describing the polar-
ization ellipse in time and frequency domain (Fig. 1) and Its relationship
with the Poincare sphere.

TABLE I: POLAR''ATION DESCRIPTORS

PARAMETER DEFIIIIT'ION

a. Radar Cross Section 2

i) no polarization corrections a Jim lIR l im 4ITR 1 )

ii) with polarization cor- a - Ura LI1R r (2)

rect ions r h2

b. The Polarization Vector "A (3)
I) time domain h(t) - a H cos wt hH + a V cos (wt+6) hv

where 6 - 6V - 6 H

it) frequency domain h(tl - Re{h e J1t), where (4)

h aH eHhH + a1Ve Vhv

iII) geometric p ra- h - os sin4* cos Trs )eJ (3)
'imeter ( n o A jsInc

iv) polarization a J6/ an a 6

ratio h 01 6 H(hH + phV), where p -- a--eJ6 (6)

1c. The Polarization Ellipse h 2

7_ _2 - oF - sin 6
( )a ,(H.,, "" V ()H a n(7

Linear: 8 - 0, horizonta (a 0),
vertical (aH -0), linear 450 (a V

i Left circular (LC): 6 - 90' , aH a1

,Right circular (RC): 6 - 900, aH -a

Left elliptic: sin6 > 0

Right elliptic: sin6 < 0

Fig. I
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Table I (Cont'd): Polarization Descriptors

d. The Stokes Vector

(90 /IhHI2 + IhVt?\ 8H + aV. /aI

91 Ih H 12 hVI2l a H2-a V 2a2 cos2rcos2O Q
I - - -(8)

92 2Re{h/Hhv 2aH a VCO56 a2 cos2Tsin2o U

\g 3  - 2 ,m(hHhv•"} / 2 aNaVsin/ a s n n2t V

where
g.2.. 2 + g22 + g32 1 12 - Q2 + U2 + V2

H: I V: r LC: g RC: 0)

Modified Stokes Vector qm - a(0 + Q), ½ (1- Q), U, V}

e. The Polarization Ratio

h Ha) eJ -tanye (9)

L1near: Im(p}- 0, H: p - 0, V: p -

Circular: Re{p} - 0, LC: p - J, RC: p - -J

Elliptic: Left elliptic: Im{p} >0, right elliptic: Imfp} <0



TABLE I (Cont'd): Polarization 
Descriptors

f. The Poincare Sphere

0) Cartesian Coordinates - (gl' g2, g3)

ii) Spnerical - (go' If " , 2€)

iii) In terms of Polarization ratio

U -= e cGs -J , phase (u) (10)
+ jp 1U12 +

Fig, 2. POINCARE 
SPHERE

.3. SCATTERING 
MATRICES: 

[S], '[M], [P]

There exist three matrices 
of specific 

value to The description 
of hydrometeor

ensembles 
In the coherent 

and the Incoherent 
cases which are defined here and the

Interactions 
are derived 

(Boerner, 
et al, 1981, Chan, 1981),

I ~~3.1 
The Scattering 

Matrix 
[•

The 2 x 2 complex spattering 
matrix [S] Is relating 

the polarlzatlor, 
1Yector

of the scattered 
field h to the corresponding 

one of the incident 
field h through

• I 
"Different 

representations 
for [5] with absolute 

and relative 
phase in the bistatic

.
a n d m o n o s t a tic c a s e s a r e s u m m a r i z e d a s f o l l o w s : i n t h e bist a tic c a s e , t hie s c a t -

tering matrix with absolute 
phase is defined by

" 9!

S. ... . ... ... .. 
- " . . .. - .. . ... ..... .. 

.... .. • - ,,,•. .. .. . . 1 ...

3 P• 

... :
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(S A SI AjýAA IABI' eJ'AB

[SMA S BB B IsIeJBA ISBBI eJ41B1

iSAAIe (OAA " AB) SABSI ej

SBA ejNBA - AB) ISBB1eJ(NBe - lAB) (12) !

a eJ Ao [ S 'sMR

where *AS is the absolute phase%, [S]S,4 is the target scattering matrix with
relative phase and it can be written 'i the bistatic case as

E-1 SMR ( ISM JAA Is~ 'GA '01 - ýAB)' (13)
Ss SBAIeJ(OBA JAd 1SBBIeJBB -1'

Eqs. (12), (14) satisfy the reciprocity condition SAB'SBA(ISABI"ISBAI' OAB "-3A)
in the monostatic case. In this paper, we e considering the monostatic
case only.
3.2 The Mueller Matrices

The Mueller (Stokes reflectlor) matrix [M., the modified Mueller matrix [M _,
and the symmetrized Mueller matrix [M.I aie presented In this section. The m

reconstruction of these matrices fromsthe scattering matrix elements Is given In
Table 2. (Boerner et al, 1981, Jan & Sept.)

The 4 x 4 real M.eller matrix [M] relates the scattered Stokes vector 5. s
to the corresponding Incident vector' 9 with the following relationship

g- [M] , (14)

where the Stokes vector is defined In rable 1. A similar relationship relating
the modified scattered anid Incident Stokes vectors Is given by

4n -I [Mm] . (15)

The relationship between rM] and [M ] is given by (Boerner et al, 1981), also by
Gerrard & Burch et al, (1975. m

[Ml -[R] [M] [R -1 (16)
nl,

and -
[M -[R- I [Mm] [R] (17)

*We note that this speclfIL choice need not be the best one as e.g., in the
case of a circular polarization basis (also see Huynen, jq70).
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where the constant transformation matrix [R] becomes

[R] 0 0 (18)00 1 0

0 0 0(I

The Mueller matrices are 4 x 4 real and asymmetric. The symmetric Mueller
matrix [M s] can be deduced as follows: the received power (Huynen,1970;
Kennaugh, 1)49-54 #9) is

Pr"½[gos r+g s r~ s; [r r

g5 r gogr + g2  r _ g gs _ rQ] S(19)

s r
where .a r are the sr'attered wave and receiving antenna Stokes vectors
respectively and 'Q] ii a constant matrix and Is given by:

(1 0 00SIQ)

0 0 1 0

(0 0 0 -1)

substituting (16) Into (19), then

Fr [OI][M] 1j . [M5 j .9. r (20)

where [M = [(Q][M] Is a symmetric Mueller matrix.
s

3.3 Graves Power Scattering Matrix [PJ and its Associated [PH] and [PV]

The total backscattered power from a target is viven by (Graves, 1956)
s'r 121

Pb ths- h" - (hs*) h ,h,21)

where hs Is the backscatteru.d polarization 'ectur. S?,hstituting (il) into
(1)

whreth (&)T* T* I I T* (2
P b =(h-T IST] [S]-hl (hiT [Pit.!, (22)

where the matrix [P]is known as Graves Power scattering matrix and It is
g ven by

[PI - T* S] (23)

"T ci



10

where a, b are teal and c .; ccinpjex. The* re-construc-tiOn of the elemwnts of

[P] in terns of the el eients cf th-. 3cattorlno, matrix [S] Is given in

Table 2 (Chani, 1981)-

The matrix [p] canbe dvcomU'sed into twc% 11jeasurable matrices [PHI ,nd

[P.], where

[P] - [PHJ + [Pvl 
(24)

The elemets of' [P.] and [PV] In tervs of the eltnent$ of [S] are also shown

In Table 2 (Chan, 1981).

TABLE ?: RECONSTRUCTION OF [M], mi], [P], P] H,1 [Pvr

AND OPTIMAL POLARIZATf')N FROM [SI

MM] am]

m11 -W(SAAI 2+ 21SAIS Bs551 " IS1, 2

m12 W M2 1 - ½(sAA2 - BB12} H1 2 " SABI H2 1

m1 3 ' '3 1  RrrS'A/ " A• H1 3 , SAASAV - "31

M 1, OP -mnt lm(JSAAS + 'ABp• M 14 - Im (S AA5.4) 0 4 1l

722 - (SAAI 2ISAB2 + 1'S5 1 2K2 "SBeI-

m ef ; S S*1 pt Re(S S *1 me M
23Re{S A6, SAB SA So23 " SBB 32

AS~ 6V 1"43

24 -m - I42maSAAA - SABSBV} H24  Im( B} -- •S

m33' Re{.SAA S. + 'S, pz! H3 3 = Re-sAal + I'AB

m 4 -43 - WS{AASSB *1 I 4-I( AA!' _M4m4 = m33 + m 22 "0 in H " 3 - 212

-........ • --.- o.---'--
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TABLE 2: (Cont'd)

[p] (PHI + [Pv] CO-POL & X-POL NULLS

~~~ (: S) NH~ ISHVI COLATITUDE: e-Cos' II I
c -+-

[jc) bna~ii~ -J1 +m.

IN,[e- , b - ISMV12 + ISvvl2
C W S I mu

c.\aH - ISHM12 where: u ----.

P Ja C b, M Isvl -J2 • A
"H J b~ IS~I2 and p" -

L bH CH SHSHv 2A

.I
V . JISHV1 2  CO-P01 Nulls

S(aV cv. by V J Svv 2  A- ec bv " - '" 2S s
\ bV) cV -SH*V SVB 2  AB, C A

X-POL Nulls

A S- S *•+ S•SAB -C,

B SAA12 - JSBB1l

4. THE CONCEPT OF THE OPTIMAL POLARIZATION PAIRS

It was first shown bs, Kennaugh (1952) that there exTst two pairs of
"optimn, polarizations whlrkh can be useful in describing t.rget properties at
one aspect and at o•ie frequency (Kennaugh, 1949-1952 #9). The concept is based
on Invarlance of polarization state transformation under consideration of
reciprocity as we will Introduce naxt.

4.1 P-arlazicn State Transformation

In the following w6 shall lintit ourselves exclusively to the monostatic
case - e1, *. - *t) and we may define the "normalized monostatic scat-
tering Ltril 5 Mith Klatile phase" In terml of two arbitrary eillptically

J orthogoncl jolarFý,,ation base vectors hA and hB so that with h- hAhA + hBhB

(A S B 5AB *SBA
,s]t ] (25)

BA RD •AB BA

•I L



Thus, assuming reciprocity of the propagation path (SjB t SnA) and conser-

vation of energy, we require five real quantities to itemne IS] completely
(Kennaugh, 1949-19c2 #],.#4). However, we note that In case S, 0 S., i.e.,
ruclprocity of the propagation paths is violated, the definition of %(25)
cannot, be used (Kanereykin et &1, 1966) as may be erncountered for a propa-
gation path within a highly ionized cloud containing varlouý. dense liquid
and sol id Ice states of hydrometeors (Jeske, 1976).

A•ssuming reciprocity holds, t.here exists an Infinite imber of general
pairs of or'thonormal elliptical polar,zation vectors hA, h and an
Infinite number of possible invariant transformations (Kennatgh, 1949-1952
#12). Numerically, the transformation properties of S(A,B) assuming no
polgrization losses from any one orthonormol polarizatlon pair h - h ýh +

h h to another orthonormal pair h - hA*' hAA + hq , can be expressed in
tirmi of the geometric parameters i and I, or polTarization ratio parmeters
y and 6, mathematically expressed In matrix form

sos 4 -siný cosT js n
E[T] - Sin# )O S i c22') (26)

wheich imralies rotation of coordinate axes and deformation of ellipticiiy ot
the polarization elllp3e. [T] may also be defined according to Maffett (Crispin,
and Siegel, 1968)

(ej*Ico,, .J. sin•-
IT] - (27)

\.eJ 3 Siy eJ *cosy/

and In order for IT] to be unitary, the following cdndition on *Is has to be
Imposed *2- *1 *4- *3,where in our work, we chose *1 - *4 a 0. Thus, having
*2 - -*3 " :i, the [Ti matrix reduces to

cosy -eJasIny
[T] 0. si,, COSY/(28)

The two transformations [(26) and (28)] are equivalent, and can be representel
on the Polncare sphere as shown in Fig. 3.

z

KY
X z

Fig. 3
DFSCHAMPSI SPHERE
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Equation (26) can also be expressed In terms of polarization ratio p - tanyej
and after normalizing [T] it takes on the following form

IT -P
[T - ,1ppj (29)

P

!T
The transformed elements of the scattering matrix (S'(A',B')] - [T]T [S(A,B)]
(T] are given for the general bistatic case by

S'AIAI - ('+pp*)'([sM+ 02SBB+p(SAB+SBA)]

, S' - (I+pp*)'[-P*S + SB + SAB - PP*SAAA 8 AB PSB Aj (30)

BOA' - (l+pp*) I(p*2 SAA + S8B -pP*(SAB + SBA)]

B'B' a (I+PP*)' 1 p*2 AA + ABB - P*(SAB + SBA)]

satisfying the transformation Invariants det({S'(A',B')]} a Invariant when
dot {[T]} - ± 1, otherwise det ([S'(A',B')]} Is different by a factor of
exp(ZARG {det(T])) and

Span{[S(A,B)]} - IS l2 + ISAB12 + ISBA12 + ISBBI 2 p
-' -pj( SIA , I~j SO 12 + ISO 12 + ISO 12 + ISO 1

i =SI~ {[ '(A ,B']]A'A' 'AID' DIAI + S BOBO

- invariant. (31)

We note that !f SA.RS'B, then SOAin, -S'1B for all p; i.e., if reciprocity issatisfied for any gne pair of orAh~gonal polarizations, it is satisfied for allsuch pairs. Furthermore, we must emphasize the Important property that for
any one given aspect and for one frequency, the transformation is polarization
invariant, i.e., the transformation occurs on one and the same polarizationsphere of rasdlus p - span ([S(A,B)] }. Thus, if [S(A,B)] is known andreciprocity as well as corservation of energy is satisfied, [S'(A',B')] for
any other orthogonal pair h(A',B') can be obtained as Is known for example
for the transformotion from linear to circular polarization base vectors inLong (1975). In case of polarization losses properties of the -. aherency
matrix need to be used (Kraus, 1966), and the transformation will not occur
on the same polarization sphere (Deschamps, 1953; Deschamps and Mast,1973 ).

4.2 Transformation from Linear (HV) to Circular (ROL) Polarization Bases

Based on equation (28) we can construct a transformation from i linear
to a circular polarization base; The parameters in equation (28) are
set to the following values

y ]/4 and 6 - 3f/2
*We note that Huynen (1970) chose target maximum power m to represent the
radius.



The resulting transformation matrix [T] Is 14.

[T] - V= T (32)

The relationship between t0e unit vei:tors (h, h•v) of the linear basis and
(hR, hL) in the circular basis can naa be wri yten as:

R' Lhv

Equation (33) holds in the Incident system, its counterpart In the scattered
system !s

J [T]*

the two systems are illustrated In Fig. 4.

i .*•t t)lfl* I ¥•l

'"I.-.

FIGURE 4: INCIDENT AND SCATTERED FIELD COORDINATES

It can be shown that the scattering matrix in the circular basis [C(R,L)] is

[C(R,L)] - [T(RL, HV)] [S(HV)] [T(RL, HV)]T (34)

Substituting fequations (32) into equation (34) we obtain the scattering matrix
in the circular polarization basis In terms of elements of its counterpart in
the linear basis.
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S -S

2H 2 VV 4. J J S H + $VV

[C(RL)] *

1 5 HH ÷ VV S -_ SHH

4.3 Calculation of the Optimal Polarizations

It was shi,,n by Kennauqh (1949-1952) th ; there exist two pairs nf
optimal polarization,, the Co-Polarization Kull Pair for which S' ' rInd
S' In (27) vanish and the Cross-Polarization Null Pair for whTch" S',

an ,'gutj vanish. In Table 2, the optimal polarization (CO-POL ari A'81

P- •"L) IuTls are given In terms of [S] elements and a,,-* represented 3n the
Poincare sphere.

It should be noted that the CO-POL and X-POL iulls lie on one major
circle on the Poincare polarization sphere and the.. their locations define
the polarization fork (Fig. 5). The X-POL nulls hrv anti-podal on this
sphere and the line Joining them bisects the ang'b between the CO-POL
nulls as shown In Fig. 5. We note here that this unique description of a
scatterer under monostatic conditions given for one.frequency and aspect Is
of paramount importance to target description at one aspect and one frequen-
cy and Its propertles have been overlookeJ in practice (Kennaugh, 1949-1952;
Kanareykin, et al, 1966).

0 ore. ML. /POELPAN 'S
X .M..t ADJUSTABLE

POLARIZATIOON
FORK

,, - . .' ..-.... ........

Fig. 5: The Polarlzcion Fork (Huynen 1970)

4.4 Reconstruction of rSISR

The reconstructior, of [S] iM from M]I, [M , [P],[P] and [PV] or optimal
polarizat ions Is shown In Tabl"3. This meansl Tables 3 gi complete
interrelationship between these scattering matrices as well as the optimal
polarizations. From a measurement point of view, this Is yery Important
because IV suffices to measure one of the matrices or the optimal polarization
to calcula~te the other matrices, The reconstruction of [S] from the
optimal polarizations Is of great importance to target polaflration synthesis.
In these Tables, A and B are any twc uvrthogonal bases e,g, horizontal and
vertical. We note here that in th;e incoherent or quasi-coherent case, cluster-
ing properties of the CO-POL nulls need to be taken into consideration.
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TABLE 3: RECONSTRucVioII OF (S]SMR frcuin [M], (Mm], (PH], (PV and

OMTMAL POLARIZAT IONS

elements of from [M) frm[ from (P and [Pv]
(Me)M (A-Il, B-V)

AA__ _ +i 2 12 + in2 2) -Ml -/

AS 1 BAI I I "TI12 AA /B

Is Bl
BB7r vS~~11 2 22 r22B

#AA tan-Im1  4 + 2 tan- IM i/M1. tan- A
AB m13 + m 2

66-*AS N -1 j m~1 i 42)ImC
tan- ~ tan-I4' 32 M MRa-' e C8

- 3 - am3. 4 s. -2 Re

from optimal polarizations

[S(A,B3)] - K[~~

CO-POL Nulls are known:

K 4 I-{pC0  + pCO12 + 2IpCOpCO12+ 21~

I I ~ *E1  *E - 2~aep

y -- 2 exp J E

One CO-POL and one X-PI)L are known:

K - rPD 0 M 2 1 (pX)* (pCO)2 + p~X12 +IpCO12{lpCO - CO1 j)x)2.. 2pX1 2)ý

+ IapCO(px)* -I1XI2 + 112

X Pc,~CO0_ pCOj0 X1 2 -2pX]exp(-J* E), ýE phase (px) *(PCO) 2 + )

- (2 c0(pX)* - jpx1 2+ l]exp(-jýE

Z a ( )*(pCO)2 + X
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4.5 Optimal Polarizations f~or Different Isolated Simple Target Shapes

The CO-POL and X-POL nulls are calculated here for different target
shapes. Table 4 shows the calculated nulls for simple shapes, e.g. Ideally
conducting flat plate or sphere, metallic trough, right and left metallic
hel ices.

TABLE 4: CO-POL AND X-POL NULL FOR SIMPLE TARGET SHAPES

SCATTERING [S] AND CO-POL (C) AND X-POL (X)

TARGET MODIFIED MUELLER [M ] NULLS ON POINCARE
MATRICES SPHERE

1 10
IS] - (,,,.

S0 0oo 0

a. Ideally conducting flat Mm] 0 0 0
plate or sphere (0 00 1)

/, t= -± .I mi.

(M10 00O00 1

m]" 0 - 0
b. Metallic trough (0 0 "I

I 1 0 1/

[M I 1 0

[m]= 0 0 00

c. Metallic helix - - 0
(right screw)

//•/ ,Ks] - U ,

:[Hm0 1
00 00

Metallic helix ( 2 0
(left screw)

, I~~~--- .. . .. ..i .. . ... i. .I .I
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5. FREQUEACY-DEPENDENT RELAriONSHIP OF POLARIMETRIC SCATTERING MATRIX
ELEMENTS WITH SPECULAR POINT CURVATURE

The time-domain first order polarization-dependent correction to the
physical optics Impulse response has been given by Bennett et al (1973, 1977
and 1981) as

4( Ku - KV A dA
r r, t) (a Hui - av Hvi ]

A

where a , a are unit vectors along the directions of the principal
curvatu~es Xt the specular point; H ., H are the components of the inci-
dent field In the directions of a a YvIespectively; K K are the
principal curvatures at the specuYar paint; and A is theUsiltouette area
of the scatterer as delineated by the Incident impulsive plane wavefront
moving at half the free space velocity.

An expression for the far scattered impulse response field was found

in [Bennett et al, (1973) and (1977)]

ri1 d2 A

roHs(pO) (r, t)- T7 d- alHl

which is the Kennaugh-Cosgriff formula, (Kennaugh & Cosgriff,.1958; Kennaugh
& Moffatt, 1965). The corrected total field Is thus

r0Ho (r, t) - roHs(PO)(r, t) + rlIs(p0  t)

which is transformed to the frequency donoa!n, and is directly related to
the scattering matrix which exhibits total polarization/depolarization
effects (Chaudhurl et al, 1982). Ignoring scale factors, the matrix
elements are given by

I K- K
S11 - (jk)2 AF(k) - (jk) AF(k) u cos 2

1 K - K$ y- (jk) 2 AF(k) + (jk) AF(k) u V22 T ~) 4 cos 2a(35)

K -K
S12 " (Jk) AF(k) u vsIn 2a

where k Is the wave number, AF(k) is the Fourier transform of A(t), the
polarization angle a is defined In Figure 6 a.. The validity of (35) requires
high frequency Interrogation with smooth, convex, conducting targets. (Fig. 6b)

cp1 - R - 22
A-complex function (where R ) is defined, and curvature

I +R Iinformation can be extracted from it at high frequencles. A relationship
between the phase factors of the scattering matrix elements and the principal
curvatures is then established.(Chaudhuri et al, 1982)

SK- K
U v = k t(
2 co-- 2cs tan (36)

where ÷d ` 022 t11-
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FIGURE 7: BEHAVIOR OF D AT HIGH FREQUENCIES (Foo, 1982)
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The cross-pal nulls are also found to be along the directions of principal
curvatures. These dircctions can be recovered from the scattering matrix
elements (Chaudhurl et a1, 1982).

The curvature recovery model Is based on the first order correction to
the Physical Optics approximation. Higher order corrections are investigated
by directly extending the space-time integral equation approach of Bennett et al,
(1977). The second order correction current is found to be very Insignificant

when compared to the first order one (Chaudhuri et al, 1982) and (Foo, 1982).

The phase-curvature relationship (36) Is tested by applying It to
theoretical, as well as, experimental backscatterlng data obtained for a pro-
late spheroidal scatterer, as shown in Figures 6 to 8. Both sets of data
support the relationship well. Figure 8a is a direct verification Qf (36)
with theoretical data; Figure 86 depicts that the quantity k Im j!, converges

to Ku Kv as kb IncreasIs; Figure Bc Is a plot of the Imaginary versus

the real part of kI [R, , and shows that, as predicted from theory, It

converges to (or hov4S Raround) a point on the imaginary axis as frequency
increases. The distance of this point in the Imaginary axis from the origin1 equals the required value KU'Kv * 0.375 for the specular point of interest.

Figures 8a-8c refer to the b0oadside incidence to a 2:1 prolate spheroid in
Figure 6b with * - 900. For useful presentation of results from experimental
data, the complex plot, such as that in Figure 80, Is found to be most
interpretative (Chaudhuri et al, 1982) and (Foe, 1982). Figures 8d-8f are
the experimental versions of Figures 8a, b and c. Deviations from the
theoretical predictions are mainly attributed to the k factor and the tangent
function in (36), and the relative phase error between the TE and TM Incidences,
all of which become more significant at higher frequencies (Chaudhuri et aI,
1982) and (Foo, 1982).

'I While the phase difference of like-polarized Lerms, however small, contains
curvature Information, the phase sum, regardless of the type of orthogonal
polarization bases, tends to a value which isi twice the argument of the Fourier
transform of the silhouette area of the target (Foo, 1982), I.e.,

011 + *22 + 2 Arg AF(k) (37)

The phase sum also tends to the argument of the scattering ratio defined as
the ratio of the determinant to the span of the scattering matrix

12

S 11S22 - 12(38)

Is1112 + IS22 12 + 21S 12 12

*11 + ý22 ) Arg D (39)

The magnitude of the scattering ratio, whose definition is Immaterial
of whether linear, circuiar or general elliptic polarization is used, ap-
proaches 0.5 rapidly :s frequency is Increased, i.e.

DID - 0.5 (40)



21

A, 0Ln

NMI K

a) Direct Verification of Phase-Curvature 0

Relationship (theoretical)

10.0 0 '2 ,0 t'0 0 6. 0

d) Experimental verplon of (a)

3 3a • M a

I A

'0 -74 '09 11, •
1 0O M •

b) Convergence of k me xe~mnalV~olno b

c) The Scattering Chart
Experimental Version of (c)

FIGURE 8 Comparison of Phase-curvature Relationships for

cheoretical and experimental data (Foo, 1982)



22

The magnitude of the ratio is Interpreted as the ratio of the maximum
radar cross section to the trace of the power scattering matrix [P] at high
frequencies, I.e.,

'max
Tr[P] ÷ 0.5 (41)

where 'max Is the optimum radar cross section defined In.Kennaugh (1949-1951t),

Sinclair (1948), as

a rt - I._r . [S] 2

In the above, It Is assumed that identical transmitting and receiving antennas
are used; ht and hr are the antenna heights, and are normalized to unity;
[P] Is the Graves Dower scattering matrix defined In Graves (1956), as

[P] - [S]* iS]

The complex plots of the scattering ratio provide a simple check on
the accuracy of high frequency polarimetric measurements (Foe, 1982). The
complex plot and the amplitude p'ot of the ratio are depicted In Figures 7a
and 7c, respectively, for theoretical data. In Figures 7b and 7d, the
respective plots for measurement data are provided which demonstrates the
usefulness of Introducing Eq. (38)

Another curvature recovery equation has been derived (Foo, 1982) in
circular polarization basis vector notation

(u ) .k2  RR CLL (42)

- CL "Z2

LR

where the C's denote the elements of the circular polarization scattering
matrix. It is to be noted that the quantity ICRRIICLLI - ICR,.I 2  (Morgan
and Weisbrod 1932) can be Interpreted as,

(ICRRI ICLLI - ICRLI))) ](43)

which reveals area Information for a smoothconvex, conducting target at
high frequencies (Foo 1982).

The curvature recovery model Is proven to satisfy the image reconstruction
Identities of invariant transformation (Foc 1982). It is found that the
determinant of the scattering matrix is strictly transformation-invariant If
(Foo 1982)

Det [T] ±1

where [T] is the unitary transformation matrix, whereas, the invariance of
the span of the scattering matrix necessitates no restriction (Foo 1982), i.-.,
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Det [C] e j2Arg(Det [T]) : Oet [S] (44)

and

Span [C] - Span [S] (45)

where [Cl -can be extended to the scattering matrix resulting from tranti-
forming (S] to the general eiliptic polarization.

Finally, the values of kb (Chaudhuri et al, 1982) have buern fotind to
be most potentially suitable for curvature recovery of the 6" x 12" prolate
spheroid (and probably targets of similar size and shape), prcvided that
polarimetric measurements can be Improved to a better accuracy, Not only
Is this range of kb valid for the first order correction to physical optics,
but it is also a compromise range between the high frequency condition
"required by the curv'ature recovery model and the drawback to lower frequencies
required to prevent crit;cal magnification of measurement error.s (Chaurihuri
et al, 1982)

6. MEASUREMENTS OF [M], [P], and [S]

The measurements of the scattering matrices [S], [P], and [M] are intri-
caLe, and various methods exist which have been summarized recently by
Chan, 1981. Of particular interest here is thel meas'irement of [S] and,
specifically, the retrieval of both amplitude and phase of tll of the rele-IC (vant elements of [SI]Mi.e, ISAAISB: I S, "iSAI,•AA' on

assuming that -AB "BA )' Since this rief Tntroduc•,on .oes no allow,i..a complete treatment, we refer to the above report and ppliot o•ut only that
it is necess•ary to recover the relativ.- piasz between the two co-polarized
,~omponents in addition tc the relative phase between the co-/cross-polarized
components, as welt as the amplitudes of isA S which requires

pa, IS~~~AA!I 'EQBB I S~ h rqieIsolation of at least 25 to 30 dB between co- and cross-polarized channels.

6.1 pAm pitude-Only Measurements

When amplitude alone is measured, cross-section measurements do not ,

lead to a direct determination of the scattering matrix. But, rather, the
measured data provide the coefficients of equations fror which the magnitudes
and elative phases of the matrix elements are deduced. Hence, only [SMR
cf be deriv-.d frJnl the measurements.

a) heý,surement of [M ]: The Mueller mat-.ix [M] of a target at one
'aspect abgle c2 n s f teariieobtained from its associated S R as shown

in Table 2. As for the measurement of the average Mueller matrix <[M]> of
a target, a set of nine (9) independent measurements of average power for
various combir--ions of antenna polarizations are required to obtain <[M]>.
All elements of the symmetric [MS], as defined in Eq. (20), can be
obtained with the'4et of transmitting and receiving antenna combinations as
shown in Table 5.

V
~ ~I
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TABLE 5:" ANTENNA POLARIZATION FOR THE MEASUREMENT OF THE SYMMETRIC [MS(mi.)]

Transmission Reception Average recelved power
€,m4 5 o t/ .. . ..

ý 0-45' •(fl I33 2m 13)

W,, 35' 0-1350  4(m! +÷;3 3 - 2m 13)

Horizontal Horizontal 4(m11 +m22 +2n + 2 )

Vertical Vertical 4(m 1 +m2'-2;m12 )

Left circ. Le=ft circ. +4 +2m111 244 14)

Right circ. Right circ. ;,(m 1 1÷m4l-2m 14)

*,,45 0  Horizontal 4( +mI +2
11 12 13 23

*-45* Left ci'c. (mI i1i 3+1

11 13141134)
Horizontal Left ci.rc. r(mi1 +T U +-14÷m24)

Nc~e that t he expressions In the average received power column of Table 6.8
have dlfferent siins frm those derived by Kennaugh [2: No. 7J. In Kennaugh's
report, the ý'ýtokes v!!-cof for horizontal pularizatlon Is defined as T

I IV/2.. [1 - I 3 0] , whereas, here It Is defined as 1/2-2[- 1 0 00

b) Measurement of [SI_,n: The monostatic [SlCMR is specified by five (5)
|r.depenrdT-Mr-pa , three (3) unsigned 5Mplitudes aWd two (2)
relative phas.s. In order to determine these five (5) para11ete.3, five (5)
Independent maqnitude-determining measurements have to be made. In general,
therefore, seven (7) amplitude measurenents are needed to completely determine
the [SISMR.

Kennaugh (1949-195Z4) suggested measurements using the same transmitting
and receiving antenna polarizations. Only one of these measurements need be
other than linear polarization. The measured data are used to locate the CO-POL
nulls of ihe [S] on the Poincare sphere. Once the CO-POL nulls have been
determined, the goresponding 3 S can be completily specified.(Boerner et al,
1981). The combinations of transm'rtinn and receiving antenna polarizations
are summarized in Table 6.

.1
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TABLE 6: TRANSMITTING AND RECEIVING ANTENNA POLARIZATIONS
FOR AMPLITUDE-ONLY MEASUREMENT

Transmission Reception Measured Cal culated
Paran•ters Parameters

(1) Vertical VertIcal Is

Vertical Horizontal ISHvI

if JSHv10O in (I), proceed with the following measurement

(2) Vertical t45' cosI($VV-:HV)
Ve rt ical Ri g ht c ircul1a r -s In (¢VV- HV

Horizontal Horizontal JSHH1

Horizontal Right circular -sin(¢HH-OHV)

Hori zontal p-490. Cos(HH=HV)

If ISHVIfO, replace (2) by (3)

.2) Horizontal Horizontal Is

d)"45' ¢m5 0° cos (VV-¢HH)

0-45° Right circular sin(1v -HH)

ROSS AND FREENY (1964)

c) Measurement of [P]: The power scattering matrix [P] specifies the
total power backscattered from the target for any transmitting antenna polar-
ization, hence, it can be found by measuring only the total power in the
backscattered return, no phase measurement is necessary. The form of the
power scattering matrix Is PB(HV) is

. p ,'- • . • • ... . . . . . . . . . . . . . . . . . . .. . .. . . ... . . . . . . .. .
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T*[P(HV)] [S(HV)] [S (HV)]

IIs12 +I SHv 2S+ *S vI+H HH 4S v SHV

L(HH SHv SHV Svv) HIS v2+ 1 Svvl2

*I: (46)
K k

where k and k are rfal, K is complex. [P] can be completely specified by

transmilting horizontal, vertical, * - 45* linear polarization and right-
* handed circular polarization and measuring the total power backscattered,

no phase measurements are necessary (Graves, 1956).".1

For example, If horizontal polarization is transmitted, I.e.,

ht ] (47)

then, front P b (ht)T [P] ht, we have

k" K I
SPbH [1 0] ki (4:8)

where the superscript Indicates the polarization of the transmitting antenna.
The result Is summarized In Table 7. It should be noted that [P] cannot be
obtained using linear polarizations only. Rather, linear, as well as, circular
polarizations are required.

TABLE 7: TRANSMITTING ANTENNA POLARIZATIONS FOR THE MEASUREMENT OF [P]

Transmitting Total backscat- Measured
Polarization tered power Parameters

Horizontal Pb Hk

Vertical PbV k

0-45'o Pb 450 o (k1 +k2 )+Re{K}

Right Circ. P RC ½ (k +k2)+Im{K}
_ _ _ _ _ b _ _ _ _2_
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d) Measuremert of [PH] and [P,]: The elements of [PHI and [P can be

determined by power measurements similar to those for obtaining [P]. For
the determination of [P ], we transmit horizontal, vertical, * - 45' and right
circular, and then receive with horizontal polarization only, i.e., the power

'backscattered In the horizontal channel. As for [P ], we receive with
horizontal polarization only, i.e., the power backsXattered in the vertical
channel. The results are tabulated In Table 8 and Table 9.

TABLE 8: TRANSMITTING ANTENNA POLARIZATIONS FOR THE MEASUREMENT OF [PHI

Transmitting Backscattered power Measured

polarization In horizontal channel parameters

Hcrizontal PbNH SHHI 2

rV

Vertical PbV vI 12

450 1V-45° PbH" 4(ISHHI 2+lSHvI 2 )÷ Re{SHHSHV)

Right clrc, P bHRC 40ISHHI 2+ISHVI')+ Im{SHH*SHV}

TABLE 9: TRANSMITTING ANTENNA POLARIZATIONS FOR THE MEASUREMENT OF [Pv

Transmitting Backscattered Dower Measured

polarizatIon in vertical channel parameters

Horizontal PbV i Hv J

V

Vertical P is

4,45' PbV ; ,(Is HVISVV12)+Re{SHv SVV}

S~~~~RC )+mSv

Right circ. PbV .(IsHvI•+lSvv Svv S

6.2 Amplitude and Relative Phase Measurement

The technique of measuring amplitude and relative phase has been used
to obtain scattering matrix data by Kennaugh (1949-1954), Ross and Freeny
(1964), Crispin et al (1961), and Huynen (1965).

L _
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In the following, several more useful methods are summarized.

6.2A Linear Polarization Basis

The 10 cm CHILL Meteorological Radar is one such system tOat hAs the
capability of measuring both the amplitude and relative phase of the scat-
tering matrix. The CHILL system Is a coherent radar which has the ability
to rapidly switch from vertical to horizontal polariza.tlon. The polari-
zation switching Is accomplished by use of a switchable ferrite circulation
which Is located behind the parabolic antenna(Mueller, 1981).

Measurement with the "fast switch" requires that the switch be transfer-
red after each transmitter pulse. First, a horizontal polarization, and
then a vertical polarization measurement Is obtained. Two separate channels
are used to keep the horizontal and vertical measurements separate. It
should be noted that the same logarithmic receiver, sample and hold, and
A/D converter are used for both channels. Thus, any non-linearities of
these analog circuits are reflected in both channels, and will tend to
cancel. The signal processing Is achieved with an A/D converter and a
floating point integration. The five (5) most significant. bits are separated
from the eight (8) bit digital word and used to represent t!v horizontal
power and then the vertical return power are Integrated separ3tely In the
floating point Integration.

With additional modification, the dual polarization antenna switching
capability can be enhanced to 834 m sec which will complete recovery of the
polarization phase Information so that the relative phase scattering matrix
IS]ciM• can be measured within less than 4 m sec time frames, which would be
jusFi elow the projected decorrelation time for hydrometeor investigations.

Similar experiments have been carried out by Ross and Freeny (1964),
and their results are summarized In Table 10.

TABLE 10: TRANSMITTING AND RECEIVING ANTENNA POLARIZATIONS
FOR AMPLITUDE AND RELATIVE PHASE MEASUREMENT

Transmission Reception Measured Parameters

Vertical )slmul- Is vvI}
(1) Vertical taneous OVV'¢HV

Horizontal recept- iSHVI
ion

If iSHvI 0 0, proceed with the following measurement

(2 Hrional . Horizontail simul- JsHH I(2) Horizontal taneous " HH- OHv
Vertical recept- IsHVI

ion
_ _ on__ Continued

S. . . .... ...... ................ .... . ....... ... . 41 i I I I l
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TABLE 10: (CONTINUED)

if Ifs H 1 0, replace (2) by (3)

I Horizontal simul- Is IIV2;(3) €=45* /taneous SHHr ýH-V

Vertical recept- Isvv I HH'VViionSV

6.2B Circular Polarization Basis

The infcrmation of the backscattered characteristics of a radar target
can be greatly improved If successful suppression of clutter return can be
achieved. Advances In the field of radar polarlmetry have clearly shown

* the usefulness of knowledge of the complete vector characteristics of the
scattered fields which' led to the development of dual-channel polarization
diversity radar. -Such a system Is capable of transmitting arbitrary polar-
ization and receiving the backscattered wave In two channels, one of which
Is polarized parallel to the transmitting channel, while the other is
orthogonal to it. The complete scattering matrix can be measured in an
arbitrary polarization basis by alternately switching the transmitting and
receiving channels.

Successful use of this type of system has been documented by such
Investigators as G.C. McCormick and A. Hendry, F.E. Nathanson and '%. Poelman.
Their published works are referenced in the attached bibliography.

h brief description of the systems used by the above-mentioned investiga-
tors Is given here:

Nathci!-son (1975): Has proposed a technique to discriminate effectively
ag--•nFt rain clutter which is implemented In a two (2) channel system with
the samýe and opposite sense of polarization (circular) to that of a trans-
mitter available at the inputs. The schematic diagram is shown in Figure 15.

"tun• Circuitry for

I-. ~-i -- adaptive circular
polarization (Homodyne
Modulator same

SI circuitry a3 Homodyne
. Detector).

FIGURE 15: Nathanson (1975)

-~ a A
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McCormick and Hendry (1975) Realized a sfstern determining certain parameters
of rain clutter using "the ideal polarization diversity radar" (1975).
See Figure 16.

T~iIIfN *UUNAMICOWAVI . . .. . .. .

atNC 1.0C. Mii

I 0uL .CMM,(L I

Block diagram of radar apparatus

FIGURE 16: McCormick and Hendry (1979)

Poelman 0981): Introduced another way of suppressing rain clutter In
an X-Band radar facility for polarization signature studies of targets and
clutter. This system has a dual-polarized antenna which receives all back-
scattered power of the target in the parallel and orthogonal polu'rizations

LA in separate channels.
It can utilize both linear and circular polarization, the latter used

primarily for rain clutter suppression; whereas, the first for target In
clutter discrimination.

ELECTRONIC
STEERING

DUAL- WAVE POLARIZER DRIVEN AMPLIFIER
POLARIZED ASSEMBLY B L BRANdMITTER COstlI

ANTENNA ;ASSEM TRANSMITTER (COH)

Block diagrain of existing
CUAL-C ANNEfl1--jjj,1E PROGRAMMABLE experimental X-band radar

RECEIVER LkpiJ POLARIZATION DATA facility for polarization
ASSENGLY Q ANALYZER stud ies.

FIGURE 17: Poelman (1981)

6.3 Amplitude and Absolute Phase Measurements

The method of measuring amplitude and absolute phase Information can
be used to determine the scattering matrix completely by transmitting only
two (2) linear polarizations and receiving three (3) linear polarizations,
see Table 11.

I .
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TABLE Il: TRANSMITTING AND RECEIVING ANTENNA POLARIZATIONS
FOR AMPLITUDE AND ABSOLUTE PHASE MEASUREMENT

TRANSMISSIONS RECEPTIONS MEASURED PARAMETERS

Vertical Vertical IsvvI ' OVV

Vertical Horizontal ISHVII *HV

Horizontal Horizontal IsHH'' *HH

FREENY (1965)

The amplitudes and phases of the elements of the scattering matrix
were measured at ElectroScience Laboratory of Ohio State University (ESL-
OSU). The experiments were conducted (Walton 1982) on a frequency domain
range yielding the backscattered returns SVV and S (SHy and SVH being
zero In this case). HH

7. ASPECT-DEPENDENT PROPERTIES OF OPTIMAL POLARIZATION NULL LOCI
MOTION ON THE POLARIZATION SPHERE

7.1 Vector Scattering Center Interaction

Of particular relevance to this electromagnetic target scattering
problem Is the Interaction of polarization/depolarization sensitive scat-
tering centers on a single closed target of irregular shape, which was
first attacked rigorously by Huynen (1960) In his dissertation. In this
masterpiece, he developed his little understood "N-target decomposition
theorem", utilizing canonical properties of the distributecL target's Stokes
matrix, which specifically applies to clutter analysis and multiple vector
scattering center Irteraction of single targets. This theory is of para-
mount importance to further advancement In radar polar~metry. Althouth
It still requires extensive extension, it clearly paves the single unique
method of complete polarimetric description of radar clutter and average
object, an immensely complicated electromagnetic inverse problem. We
are fortunate to have the senior expert In the field, Dr. J. Richard Huynen
(1982), join the efforts of this research task, and in a separate report
entitled, "A revisitation of the phenomenological approaches with app'li-
cation to radar target decomposition", he has further developed on his
N-target decomposition theory.

Whereas, In collaboration with Morgan and Weisbrod (Teledyne Micro-
netics) to po'larimetric CW radar target characteristics description, we are
following the direction of extracting a complete set of most simple canonical
target shapes (',ich as the sphere, the linear wire target, the n-bounce
corner reflector, the left/right winding helices, the cone-tip/ogival and/or
spherical capped truncated cylinders with and without fins, bumps, protru-
sions, etc. treated In Boerner et at, Jan 15/Sept, 1982), in consultation
with Bennett and Mieras (1982), Sperry Research Center, use of a CW vector
dumbbell scattering center (matrix) interaction was chosen. Both methods
have proven to provide useful results and can be used for interpretation
of the motion of the Huynen polarization fork as function of frequency,
relative aspect angle (with respect to line joining the vector scattering
centers) ind the electric separation of both.
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7.2 Dynamic Polarization Fork Motion

Specifically, we observe that for linear (H, V) polarization base

pair anchoring, the cross-polarization null move only whenever the principal

target symmetry axis is rotated about the line of sight orthogonal to (H, V);

and that the co-polarization null locations move on a quasi-circular spiral

non-closing paths as function of differential change In aspect angle where,

for small electric separation of vector scattering centers the circles remain

with Isolated patches, whereas, for large electric separation on large

circles encircling the total polarization sphere. Furtheremore, the specific

character of the vector scattering center (as e.g. smooth versus cone-tipped)

dictates the relative differential speed with which these loci are transversed

(slow versus rapid) as functions of differential aspect angle. We also note

that for a large ensembe of closely packed vector scattering centers, the

loci of the co-polarization nulls remain within rather small Isolated patches

on the polarization sphere which is indicative of clutter-type. Furtheremore,

the specific quasi-circular paths drawn are indicative of clutter motion.

We note that the analytical result was verified experimentally by Poelman

(1980-1982) as explained In Jetail in (Boerner, STýS 1914, Sept. 30, 1981),

and this specific phenomenon of the dynamic fork motion of time frames of

helcw the vector scattering center reshuffling time requires further extensive

analytical and experimental studies. In general, the cross-polarization

null location for linear symmetric targets is of slow precession type, and

the rapid quasi-circular path motion of the co-polarization null location Is

nutative gyroscopic in nature. We note that this specific dynamic polarization

fork behavior Is well described by Huynen's "single target" description

Into five target characteristic parameters (pro' Y, ', T m') as detailed

In (Huynen, 1982).

However, the electromagnetic inverse problem of decomposing a single

radar target into its characteristic polarimetric target vector scattering

centers is very complicated and still not resolved.

7.3 Optimal Polarization Null Characteristics of Buoy-Target Models

(ausing measurement data of TELEDYNE-MICRONETICS, L.A. Morgan and

S. Weisbrod)

In (Boerner et al, Sept., 1981) the optimal target polarization null

concept, introduced briefly In this paper, is applied to experimental

amplitude-plus-phase matrix data measured by Teledyne-Micronetics for two

specific classes of water submerged buoy targets (six types of dihedral cor-

ner reflectors and twelve types of cylindrical open-ended pipe sections with

specific termination). For the purpose of extracting useful target classifi-

cation algorithms and also In order to analyze the aspect-angle dependent

behavior, the three measured radar cross sections (%Ha aVVVH), the

span {IS]), the det {[S]j; Re {(CRRCLL)/(CRL)2}, {ICRRIICLLj - ICRLI 2 }, the

spherical angle spanned by two co-pol nulls, and the co/cross-polarization null

loci are plotted as functions of aspect angle. In Figures 18a and b, the

polarimetric target behavior for a horizontal, truncated open pipe-section

above a sea bed, and a vertical pipe section of the same dimensions in isolation,
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TarUet S31 ,vv
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Figure 18a Polarimetric Target Behavior(Horizontal, Truncated
Open Pipe-section above Sea-Level)
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respectively, is presented, whereas in Figures 19a and b that for a four-
corner dihedral reflector above a sea-bed and In isolation, respectively.
Comparing the data obtained for targets above the sea-bed with bhose in
Isolation, the expected Interference behavior for Figures 18a/19a versus
Figures 18b/19b is apparent and will not be f,,rther analyzed In detail, and
we refer to the associated report by L.A. Morgan and S. Welsbrod(1982) for
further relevant Interpretations (also see Figure 20).

By analyzing the various plots for the two principal target categories
considered, we are able to verify the fundamental theorems which can be
derived from Huynen's polarization fork concept (Huynen, 1960, 1970, 1978,
1982); the target vector scattering interaction theory (Bennett and Mieras,
1982); the relationship between relative scatterihg mqtrix co-polarization
phase and specular point curvature perturbations of Kennaugh's target silhouette
area function(Foo, 1982); and the dynamic behavior of the polarization fork
motlon(Poelman, 1980-1982). Although, we have considered here the monochromatic
(CW) backscattering case for reciprocal symmetrical targets only, it is evident
that very definite target polarization properties exist which may be utilized as
target characteristics classifiers and Identifiers. In the following, we will i
first summarize our observations and then extract most important polarimetrlc
target classifiers.

Observations

(I) Polarization Fork Behavior: The X,,OL nulls are In all cases
antipodal, and the line joining the X-POL nulls bisects the spherical
angle between the COPOL nulls on the polarization sphere. NOTE, this
specific polarization fork behavior represents a very efflc-Tefnt method
of checking on the accuracy of monostatic scattering matrix data for
the reciprocal target case (i.e. an Isotropic target embedded in an
isotropic propagation medium).
(i1) Huynen's Target Characteristic Angle y: The spherical angle
between the two COPOL :,ulls exhibits very distinct target characteristic;
behavior In dependence of strength and separation of the target's most
definite vector scattering centers(We will have to await the detailed
analyses of Bennett and Mieras(1982) to obtain more comprehension of
this aspect of the problem).

(IIi) Polarization Transformation Invariants: I: was clearly established
that the two target polarization transformation invariants, i.e. Det {[S]}
and Span {[S]} do provide constants for whatever measurement nolarization
basis Is being used. In addition, these Invarlants, which exhibit A

identical aspect dependence, but not frequency dependence(see Section 5;
and in more detail(Foo, 1982)), are contributing parameters towards
establishing useful target characteristic classification algorithms.

(iv) Relative Scattering Matrix Copolarization Phase (iHH " 4VV): In
strict compliance with the results presented in(Foo,1982), the relative
scattering matrix copolarization phase (ý - V) certainly plays a
dominant role in classifying undulating smooth versus rugged edged
surfaces. We note here that the circular polarization base identities,
derived in Foo's thesis(Foo, 1982) and investigated, in parts, in the
associated report by Morgan and Weisbrod(1982), I.e.{lCRRIICLLI-ICRLI2}

I
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and {Re((C C )/\CRL)2 11, contain rather similar information to
(4HH - 4Nom an examination of the relevant plots In FiguresLI 18a/b, I a/b, it Is evident that the theories on tArget curvature
at the specular point developed in (Foo, 1982) and summeriz'ed In
Section 5 do present rather Important target characteristic classi-
fication as w~ll as identification algorithms. For example, the
relevant figures({01il - OVV}; Re{(CLLCRR)/(CRL )2}) In Figure 18b for
the vertical pipe section amplify tfie correctness of the formulas

K' resulting from the theories developed in (Chaudhuri et al, 1982;
Foc, 1982). In (Morgan and Weisbrod, 1982), the relevance of the
quantity {1( 1j CLL IC 121, closely related to Det{[C]}, Is
emphasized. ispeculiar xpression is shown to be a maximum for
dihedral, minimum for a plate or sphere, and tero for a linear or
helical target. Here we reproduce Figure 5 of (Morgan and Weisbrod,
1932) in Figure 20, which is being explained and interpreted in

A) FREE SPACE DINIEURA1.
1) NA TER RANGE YiIIEUfl*A
C) AT- SEA DIHEDRAL

A D) SEA C'..TTER
E~ ) FREE SPACE 3UOYS

2S0-290,
- ,F) WATER RANGE BUOYS

245-2$S*
G ) AT-SEA BUOYS.

'*1J

-J

0. 4.6 .5 1.0

PROBABILITY < ORDINATE

Figure 20 Probability Distribution for {ICRICI-IRL}
according to Figure 5 in (IKorgan and Weisbrod, 1982).
Reproduced with the permission. of the authors and the
responsible NAy-AIR Contract Ufficer(J.W. Willis).

detail in their report.

7.4 Racommendations on Ptirsuino Aspect-Plus -Freguency Dependent Dynamic
_ýl -rization Fork Analyses in terms of Vector Scattering Center Interaction
Models-and Huynen's 'A-target Decomposition Theory

.1 There exists one major problem in applying polarimetric techniqdes derived
from the optimal targct polarization tiieory to the polarimetric transient time-
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dependent problem of ramp response target cross-sectional area projection
shape reconstruction, because this optimal polarization target null theory
is derived In the frequency only as a mono-frequency theory. Both Kennaugh
(1949-1981) and Huynen (1960, 1970, 1978, 1982) were aware of this complication
in their pioneering and continuing research efforts of advancing the state-
of-the-art in radar target polarimetry. What we urgently need is a thne-
dependent polarization-senitive target feature descriptive theory which is
still not completely available.

8. CONCLUSIONS

We have demonstrated in our analyses on radar target polarimetry that
broadband radar polarimetry deserves the full attention of Naval Research
Centers Involved in target/clutter handling in the boundary layer of an
ocean environment,

Spcc~fically, the propagation assessment of electromagnetic waves along
the marine boundary layer in an ocean environment is of justifiable concern
to the Navy and applies to improving techniques of surveillance, communications,
navigation, electronic warfare, and optimum sensor design. Considerable
efforts have been made, primarily at NOSC, NADC, NWC, and NRL, to characterize
the marine boundary layer using electromagnetic (EM: specifically microwaves
znd millimeter waves) and electro-optical (EU: Infrared and visible) remote
probing methods. Utilizing, in parts, the electromagnetic wave interrogation
properties at frequencies from 200 MHz to 100 THz led to the development of
sufh lower atmospheric assessment systems as IREPS (Integrated Refractive
Effects Prediction'System), PREOS (Prediction of Performance and Range for
E0 System), and TESS (Tactical Environment Support Systems).

A thorough literature analysis on the available EM/EO systems shows,
however, that hitherto, no, or extremely little, use of the broadband
polarization vector properties of the electromagnetic wave have been made.
This apparent shortcoming can result in considerable ambiguity of environ-
mental assessment, particularly in the spectral band of 1 GHz to 400 GH.
Therefore, the main objective of this research is to promote the efficient
use of novel polarimetric radar techniques, to Improve upon the assessment
performance of existing m-to-mn-wave radar systems, andi to develop complete
polarimetric chirp radar systems which allow sub-millisecond acquisition of
the radar scattering matrix and real-time sea clutter and/or target
classification and identification. We emphasize that electromagnetic vector
wave Interrogation with material bodies can best be identified as a
polarization-sensitive target feature (spatial and temporal) spectral
frequency resonance phenomenon. Every effort needs to be made to Implement
these important polarimetric/scatterometric methods into existing and newly-
to-be-developed vector wave scattering techniques for a more reliable
propagation assessment of electromagnetic waves along the marine boundary
"layer in an ocean environment.
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